维生素D与临床
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

第二节 维生素D的来源、合成与代谢

人体维生素D的来源主要包括内源性和外源性。内源性的维生素D在表皮中合成,合成的维生素D为D3。而外源性的维生素D包括维生素D3或D2,来自富含维生素D的食物和维生素D补充剂。不管是内源性的维生素D还是外源性的维生素D,均需经过两步代谢反应才能成为有活性的激素,第一步为25位羟化,主要在肝脏进行,虽然维生素D在其他一些组织也可以进行25位羟化,但进入血液循环的量很少。25位羟化在25羟化酶的催化下进行,目前已发现有多种25羟化酶的存在。经25位羟化后形成的25-羟基维生素D[25-dihydroxyvitamin D,25(OH)D]必须在1α位进一步羟化才能变为具有高活性的激素1,25-二羟基维生素D[1,25-dihydroxyvitamin D,1,25(OH)2D]。1α位羟化主要在肾脏进行,显然其他组织也可以进行1α位羟化,但进入血液循环的量也很有限,这一点与25位羟化相似。25(OH)D和1,25(OH)2D还能在24位进行羟化,分别转变为24,25-二羟基维生素 D[24,25-dihydroxyvitamin D,24,25(OH)2D]、1,24-二羟基维生素 D[1,24-dihydroxyvitamin D,1,24(OH)2D]和 1,24,25-三羟基维生素 D[1,24,25-trihydroxy vitamin D,1,24,25(OH)3D]。在机体不能完成25 位羟化的情况下,24位羟化也可以增强活性,在这种情况下,1,24(OH)2D可作为维生素D的活性产物,1,24(OH)2D和1,25(OH)2D 具有相近的生物活性。而已完成 25位羟化的25(OH)D 和1,25(OH)2D,如进一步羟化,只能变为无活性的代谢产物。

一、维生素D3在表皮的合成

人体表皮角质形成细胞内储存的7-脱氢胆固醇经阳光中的紫外线照射后B环打开,形成维生素D3前体,在紫外线的照射下,维生素D3前体的合成在1小时内达到高峰,紫外线照射同时可将维生素D3前体转换为无生物活性的光固醇和速固醇,表皮中的色素和紫外线的强度对维生素D3前体的合成有很大影响,随着紫外线照射时间的延长,光固醇的合成不断增加,并且该反应是可逆的,在维生素D3前体减少时光固醇又能逆转为维生素D3前体,维生素D3前体经过温促反应缓慢转变为维生素D3,与维生素D3前体、光固醇和速固醇相比,维生素D3更容易进入血液循环,与维生素D结合蛋白结合(vitamin D binding protein,DBP)。这样,短时间的阳光照射因光固醇向维生素D3前体的转化以及维生素D3前体向维生素D3的缓慢转化,使维生素D3在表皮中持续生成,又由于维生素D3前体向光固醇和速固醇的转化,并且维生素D3在光照下还会转变为超固醇Ⅰ、超固醇Ⅱ和5,6-反式维生素D3。这样,避免了长时间阳光照射所致的维生素D3过度生成。

表皮中的黑色素通过吸收紫外线,能减少表皮在阳光下合成维生素D3的量,这可能是有色人种血25(OH)D水平较低的原因。阳光照射又使表皮中黑色素合成增多,又进一步预防表皮中维生素D3的过度合成。紫外线强的地域人群比紫外线弱的地域人群的维生素D3合成量要多。因此,与居住在纬度较高地区的人群相比,居住在纬度较低地区的人群表皮合成维生素D3的量更高。另外,居住在同一纬度的人群,夏季比冬季产生维生素D3的量更高,午间比其他时间产生维生素D3的量更高。与居住在海拔低的人群相比,居住在海拔高的人群维生素D3合成量更高。衣服和防晒霜明显减少维生素D的合成,如生活在中东的贝都因人,与以色列的犹太人相比,尽管有同样强度的阳光,但更容易患佝偻病和骨软化症。

二、25(OH)D在肝脏的合成

表皮中产生的维生素D3和食物中摄入的维生素D2或D3统称为维生素D(图1-2-1)。D2和D3之间不能互相转换。不管是D2还是D3,都需经过25位羟化才能转变为25(OH)D,尽管其他组织也有25羟化酶,但体内的25位羟化主要在肝脏进行,25(OH)D是维生素D在血液循环中的主要存在形式,可作为身体维生素D营养状况的指标,通常所说的维生素D的营养状况是指血25(OH)D的水平。25羟化酶存在于肝细胞的线粒体和微粒体内,分别由微粒体内的CYP2R1和线粒体内的CYP27A1的基因所编码。

图1-2-1 维生素D2和维生素D3的结构式

线粒体中的25羟化酶为CYP27A1,它具有高效能、低亲和力的特点,属于非限速酶。CYP27A1在体内组织分布广泛,在肝脏和肌肉组织中浓度最高,在肾脏、肠道、肺、皮肤和骨骼等组织也有一定程度的表达。CYP27A1突变导致脑腱黄瘤病,部分患者出现钙磷代谢紊乱,但CYP27A1敲除的小鼠实际表现为25(OH)D水平的升高,伴有胆酸合成障碍。CYP27A1可以对维生素D及其代谢物的24、25和27位进行羟化,相比之下,维生素D2更倾向于24位羟化,而维生素D3更倾向于25位羟化,并且1α-羟基维生素D的25位羟化比维生素D更迅速,维生素D2和D3羟化位置的不同可能是两者活性存在一定差别的原因之一。

微粒体中的主要25羟化酶为CYP2R1,也是非限速酶。与CYP27A1相似的是,CYP2R1在体内也是广泛分布,但主要存在部位是肝脏、皮肤和睾丸。与CYP27A1不同的是,CYP2R1对D2和D3的25位羟化效率是相同的。CYP2R1敲除的小鼠表现出佝偻病和25(OH)D水平降低,而CYP27A1和CYP2R1联合敲除小鼠的25(OH)D水平与CYP27A1单敲除小鼠的25(OH)D水平相近,并且CYP2R1突变的患者出现维生素D缺乏性佝偻病,补充维生素D后虽然佝偻病有改善,但不能完全恢复正常,说明CYP2R1是主要的25羟化酶。但CYP27A1和CYP2R1联合敲除小鼠的25(OH)D水平降低的程度最多只能达到70%,说明还有其他种类的25羟化酶存在的可能性。

目前并未发现肝脏的25羟化酶受调节的证据,而有研究表明,肠道和肾脏的25羟化酶的表达受1,25(OH)2D的下调。动物研究显示,给予雄性大鼠雌激素可以提高25羟化酶的活性,而给予雌性大鼠雄激素可以降低25羟化酶的活性,但在人体尚无相关的实验依据。

三、1,25(OH)2D在肾脏的合成

1,25(OH)2D是维生素 D活性最强的代谢产物,在体内能发挥最大的生理效应。1,25(OH)2D 由25(OH)D 通过25(OH)D-1α羟化酶(CYP27B1)催化合成,该酶的基因突变可导致罕见常染色体遗传疾病,称为假性维生素D缺乏性佝偻病Ⅰ型,其临床表现为生长延迟、佝偻病、低钙血症、低磷血症、继发性甲状旁腺功能亢进,血1,25(OH)2D水平低,与维生素D受体(vitamin D receptor,VDR)基因突变的表型不同,不会出现秃发,这是因为毛囊的分化需要VDR的作用,而不需要1,25(OH)2D的作用,这种作用属于不依赖于配体的受体作用。

CYP27B1是位于线粒体的多功能氧化酶,位于线粒体内膜。CYP27B1不仅仅在肾小管表达,还在表皮、大脑、胎盘、睾丸、肠道、肺、乳腺、巨噬细胞、淋巴细胞、甲状旁腺、成骨细胞和软骨细胞表达,但实际上,酶的表达水平和活性最高的组织是表皮。尽管如此,肾小管细胞内合成的1,25(OH)2D仍为血液循环中1,25(OH)2D的主要来源,调节钙和磷的代谢,而其他组织细胞合成的1,25(OH)2D被认为主要是供给局部组织细胞所用,主要调节细胞的增殖、分化和多种功能,但在某些病理情况下,肾外组织产生的1,25(OH)2D也可使血液循环中的1,25(OH)2D水平升高,如结节病的患者,肉芽肿内的巨噬细胞产生大量的1,25(OH)2D,导致血1,25(OH)2D 水平升高,产生高钙血症。

肾小管细胞内的CYP27B1的活性受甲状旁腺激素(parathyroid hormone,PTH)刺激,受成纤维细胞生长因子 23(fibroblast growth factor 23,FGF-23)、钙、磷和 1,25(OH)2D 抑制,但这些调控因素通过何种机制起作用,尚未确定。肾外组织的CYP27B1活性主要受IFN-γ和TNF-α等细胞因子的激活,而受PTH影响很小,也不被1,25(OH)2D所抑制,如在表皮角质形成细胞,当24羟化酶被抑制后,1,25(OH)2D并不能抑制CYP27B1的表达和自身的合成,说明1,25(OH)2D通过刺激24羟化酶来下调自身的水平,而对自身的合成并没有抑制作用。而在肾脏,1,25(OH)2D对CYP27B1抑制的机制还不十分清楚,因在CYP27B1的启动子区并没有发现维生素D反应元件(vitamin D response element,VDRE)。

四、24,25(OH)2D在肾脏的产生

肾脏也是维生素D代谢产物24,25(OH)2D的主要合成场所,催化酶为25(OH)D-24羟化酶(CYP24A1)。CYP24A1和CYP27B1为同源酶,共同存在于肾小管细胞的线粒体中。CYP24A1对25(OH)D和1,25(OH)2D都能进行24位羟化,在24位羟化后,经氧化、23羟化和C23-24的剪切,最终转变为无活性的维生素D-23羧酸,CYP24A1还有23羟化酶的活性,最终生成23/26内酯。

虽然CYP24A1在肾小管高表达,但它在体内广泛分布,所有VDR表达的靶组织均有CYP24A1的表达。唯一发现有例外的是巨噬细胞,巨噬细胞不表达或表达有缺陷的CYP24A1,不能灭活1,25(OH)2D。该酶对 1,25(OH)2D 的亲和力高于 25(OH)D,使 1,25(OH)2D能有效灭活,以防止细胞内的1,25(OH)2D水平过高。CYP24A1失活性突变的婴儿出现高钙血症和血1,25(OH)2D水平升高,CYP24A1敲除的小鼠在补充维生素D后,血1,25(OH)2D水平的升高和24,25(OH)2D水平的降低,并出现膜内骨矿化障碍,这种表型不能被外源性的24,25(OH)2D的补充所纠正,但能被VDR敲除所纠正,说明膜内骨矿化障碍是过高水平的 1,25(OH)2D 所致,并非24,25(OH)2D 的缺乏所致。

CYP24A1在肾脏的调控几乎是 CYP27B1调控的镜像,PTH和 1,25(OH)2D是CYP24A1主要的调节因子,而钙、磷、胰岛素、FGF-23、胰岛素样生长因子-1(insulin like growth factor-1,IGF-1)、GH以及性激素对CYP24A1也可能起一定调节作用。1,25(OH)2D促进CYP24A1的合成,CYP24A1基因的启动子含有两个维生素D反应元件。而PTH抑制肾脏CYP24A1的合成。其他许多组织都没有或表达很低水平的PTH受体,故PTH对肾脏以外的某些组织的CYP24A1几乎无调节作用,如肠道。因此,当25(OH)D或1,25(OH)2D水平降低时,PTH水平会反应性升高,此时只有肾脏中CYP24A1的合成受到抑制,而某些缺乏PTH受体的肾外组织中的CYP24A1不会受到抑制,结果显示只有肾脏1,25(OH)2D的合成会增加,而这些肾外组织中的1,25(OH)2D的合成不会相应增加。在表达PTH受体的骨组织中,PTH与1,25(OH)2D协同促进CYP24A1的合成,这种协同作用在胰岛素的作用下进一步增强。FGF-23也诱导CYP24A1的表达,限制磷的摄入能降低CYP24A1表达。此外,GH和IGF-1对CYP24A1的表达也有一定的抑制作用,但其机制意义并不十分明确。

五、维生素D代谢物的转运

血液循环中的25(OH)D、24,25(OH)2D 和1,25(OH)2D 有85%~88%与维生素D结合蛋白(vitamin D binding protein,DBP)结合,12%~15%与白蛋白相结合,大约不到1%为游离形式。DBP为一个58kDa的蛋白,由458个氨基酸组成,与球蛋白和α-甲胎蛋白具有同源性(核酸水平同源性为40%,氨基酸水平同源性为23%)。DBP主要由肝脏合成,在其他组织器官如肾脏、睾丸和脂肪中也有产生。在调节方面与其他性激素结合蛋白相似,口服避孕药和妊娠会增加DBP的合成。在体外,糖皮质激素和一些细胞因子如表皮生长因子(epidermal growth factor,EGF)、白细胞介素 6(interleukin-6,IL-6)刺激 DBP 的合成,而转移生长因子β(transforming growth factor β,TGF-β)则抑制 DBP的合成。DBP的血浆浓度正常为4~8mmol/L,远远高于维生素D代谢物的浓度,所以DBP往往只有大约2%的饱和度。DBP与维生素D代谢物有较高的亲和力,尤其是对25(OH)D,在正常情况下,仅有大约0.03%的25(OH)D和24,25(OH)2D以及大约0.4%的1,25(OH)2D呈游离状态。某些疾病状态如肝病和肾病综合征引起DBP和球蛋白水平下降会导致总25(OH)D和总1,25(OH)2D水平降低,但不一定会影响其游离的水平。另外有研究报道,DBP水平存在种族差异,如美国黑种人的DBP水平比白种人要低,但在使用多克隆抗体或蛋白组学分析的研究中,该结果未能得到重复。因此,DBP水平是否存在种族差异,有待进一步证实。

一般来讲,多数细胞不能摄取与DBP结合的维生素D代谢物,而只能摄取游离的部分,而一些疾病如肝功能不良、肾病综合征、妊娠和炎性疾病可能影响DBP的水平,从而影响总的25(OH)D水平。因此,有学者认为游离25(OH)D的水平比总25(OH)D的水平更能反映维生素D的营养状况。但是,某些组织如肾脏、胎盘、甲状旁腺表达巨蛋白(megalin)和肘臀蛋白(cubilin),巨蛋白和肘臀蛋白形成复合物后,能促使与DBP结合的25(OH)D进入细胞,以防止25(OH)D通过尿液丢失,并可能在25(OH)D由母体向胎儿的转运和PTH分泌的调节过程中起重要作用。

DBP的调节与其他类固醇激素结合蛋白的调节相似,受口服(而不是经皮)雌激素和妊娠的上调,且受糖皮质激素和IL-6的上调,而受转移生长因子β的下调。

(谢忠建)

参考文献

[1]HOLICK M F,MACLAUGHLIN J A,CLARK M B,et al.Photosynthesis of previtamin D3in human skin and the physiologic consequences[J].Science,1980,210(4466):203-205.

[2]HOLICK M F,MACLAUGHLIN J A,DOPPELT S H.Regulation of cutaneous previtamin D3photosynthesis in man:skin pigment is not an essential regulator[J].Science,1981,211(4482):590-593.

[3]WEBB A R,DECOSTA B R,HOLICK M F.Sunlight regulates the cutaneous production of vitamin D3by causing its photodegradation[J].J Clin Endocrinol Metab,1989,68(5):882-887.

[4]HOLICK M F,RICHTAND N M,MCNEILL S C,et al.Isolation and identification of previtamin D3from the skin of rats exposed to ultraviolet irradiation[J].Biochemistry,1979,18(6):1003-1008.

[5]BELL N H,GREENE A,EPSTEIN S,et al.Evidence for alteration of the vitamin D-endocrine system in blacks[J].J Clin Invest,1985,76(2):470-473.

[6]WEBB A R,KLINE L,HOLICK M F.Influence of season and latitude on the cutaneous synthesis of vitamin D3:exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin[J].J Clin Endocrinol Metab,1988,67(2):373-378.

[7]MATSUOKA L Y,WORTSMAN J,DANNENBERG M J,et al.Clothing prevents ultraviolet-B radiationdependent photosynthesis of vitamin D3[J].J Clin Endocrinol Metab,1992,75(4):1099-1103.

[8]MATSUOKA L Y,IDE L,WORTSMAN J,et al.Sunscreens suppress cutaneous vitamin D3synthesis[J].J Clin Endocrinol Metab,1987,64(6):1165-1168.

[9]ANDERSSON S,DAVIS D L,DAHLBACK H,et al.Cloning,structure,and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase,a bile acid biosynthetic enzyme[J].J Biol Chem,1989,264(14):8222-8229.

[10]USUI E,NOSHIRO M,OKUDA K.Molecular cloning of cDNA for vitamin D325-hydroxylase from rat liver mitochondria[J].FEBS Lett,1990,262(1):135-138.

[11]CALI J J,RUSSELL D W.Characterization of human sterol 27-hydroxylase.A mitochondrial cytochrome P-450 that catalyzes multiple oxidation reaction in bile acid biosynthesis[J].J Biol Chem,1991,266(12):7774-7778.

[12]ICHIKAWA F,SATO K,NANJO M,et al.Mouse primary osteoblasts express vitamin D325-hydroxylase mRNA and convert 1α-hydroxy vitamin D3into 1α,25-dihydroxyvitamin D3[J].Bone,1995,16(1):129-135.

[13]CALI J J,HSIEH C L,FRANCKE U,et al.Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis[J].J Biol Chem,1991,266(12):7779-7783.

[14]LEITERSDORF E,RESHEF A,MEINER V,et al.Frameshift and splice-junction mutations in the sterol 27-hydroxylase gene cause cerebrotendinous xanthomatosis in Jews or Moroccan origin[J].J Clin Invest,1993,91(6):2488-2496.

[15]BERGINER V M,SHANY S,ALKALAY D,et al.Osteoporosis and increased bone fractures in cerebrotendinous xanthomatosis[J].Metabolism,1993,42(1):69-74.

[16]LEITERSDORF E,SAFADI R,MEINER V,et al.Cerebrotendinous xanthomatosis in the Israeli Druze:molecular genetics and phenotypic characteristics[J].Am J Hum Genet,1994,55(5):907-915.

[17]GUO Y D,STRUGNELL S,BACK D W,et al.Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side-chain positions[J].Proc Natl Acad Sci U S A,1993,90(18):8668-8672.

[18]ZHU J G,OCHALEK J T,KAUFMANN M,et al.CYP2R1 is a major,but not exclusive,contributor to 25-hydroxyvitamin D production in vivo[J].Proc Natl Acad Sci U S A,2013,110(39):15650-15655.

[19]THACHER T D,FISCHER P R,SINGH R J,et al.CYP2R1 Mutations Impair Generation of 25-hydroxyvitamin D and Cause an Atypical Form of Vitamin D Deficiency[J].J Clin Endocrinol Metab,2015,100(7):E1005-E1013.

[20]CHENG J B,LEVINE M A,BELL N H,et al.Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase[J].Proc Natl Acad Sci U S A,2004,101(20):7711-7715.

[21]THEODOROPOULOS C,DEMERS C,MIRSHAHI A,et al.1,25-Dihydroxyvitamin D3down regulates the rat intestinal vitamin D3-25-hydroxylase CYP27A[J].Am J Physiol Endocrinol Metab,2001,281(2):E315-E325.

[22]SAAREM K,PEDERSEN J I.Sex differences in the hydroxylation of cholecalciferol and of 5β-cholestane-3α,7α,12α-triol in rat liver[J].Biochem J,1987,247(1):73-78.

[23]FU G K,LIN D,ZHANG M Y,et al.Cloning of human 25-hydroxy vitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1[J].Mol Endocrinol,1997,11(13):1961-1970.

[24]TAKEYAMA K,KITANAKA S,SATO T,et al.25-Hydroxy vitamin D31α-hydroxylase and vitamin D synthesis[J].Science,1997,277(5333):1827-1830.

[25]ST-ARNAUD R,MESSERLIAN S,MOIR J M,et al.The 25-hydroxy vitamin D 1α-hydroxylase gene maps to the pseudovitamin D-deficiency rickets(PDDR)disease locus[J].J Bone Miner Res,1997,12(10):1552-1559.

[26]SHINKI T,SHIMADA H,WAKINO S,et al.Cloning and expression of rat 25-hydroxy vitamin D3-1αhydroxylase cDNA[J].Proc Natl Acad Sci U S A,1997,94(24):12920-12925.

[27]KITANAKA S,TAKEYAMA K,MURAYAMA A,et al.Inactivating mutations in the 25-hydroxy vitamin D31α-hydroxylase gene in patients with pseudovitamin D-deficiency rickets[J].N Engl J Med,1998,338(10):653-661.

[28]WANG J T,LIN C J,BURRIDGE S M,et al.Genetics of vitamin D 1α-hydroxylase deficiency in 17 families[J].Am J Hum Genet,1998,63(6):1694-1702.

[29]DARDENNE O,PRUD′HOMME J,ARABIAN A,et al.Targeted inactivation of the 25-hydroxy vitamin D3-1α-hydroxylase gene (CYP27B1)creates an animal model of pseudovitamin D-deficiency rickets[J].Endocrinology,2001,142(7):3135-3141.

[30]XIE Z,KOMUVES L,YU Q C,et al.Lack of the vitamin D receptor is associated with reduced epidermal differentiation and hair follicle growth[J].J Invest Dermatol,2002,118(1):11-16.

[31]MURAYAMA A,TAKEYAMA K,KITANAKA S,et al.Positive and negative regulations of the renal 25-hydroxy vitamin D31α-hydroxylase gene by parathyroid hormone,calcitonin,and 1α,25(OH)2D3in intact animals[J].Endocrinology,1999,140(5):2224-2231.

[32]PANDA D K,AL KAWAS S,SELDIN M F,et al.25-hydroxy vitamin D 1α-hydroxylase:structure of the mouse gene,chromosomal assignment,and developmental expression[J].J Bone Miner Res,2001,16(1):46-56.

[33]ZEHNDER D,BLAND R,WILLIAMS M C,et al.Extrarenal expression of 25-hydroxy vitamin D3-1αhydroxylase[J].J Clin Endocrinol Metab,2001,86(2):888-894.

[34]BIKLE D D.Extra Renal Synthesis of 1,25-dihydroxyvitamin D and its Health Implications[J].Clin Rev Bone Miner Metab,2009,7:114-125.

[35]BIKLE D D,NEMANIC M K,WHITNEY J O,et al.Neonatal human foreskin keratinocytes produce 1,25-dihydroxyvitamin D3[J].Biochemistry,1986,25(7):1545-1548.

[36]HORIUCHI N,SUDA T,TAKAHASHI H,et al.In vivo evidence for the intermediary role of 3′,5′-cyclic AMP in parathyroid hormone-induced stimulation of 1α,25-dihydroxyvitamin D3synthesis in rats[J].Endocrinology,1977,101(3):969-974.

[37]RASMUSSEN H,WONG M,BIKLE D,et al.Hormonal control of the renal conversion of 25-hydroxycholecalciferol to 1,25-dihydroxycholecalciferol[J].J Clin Invest,1972,51(9):2502-2504.

[38]ROST C R,BIKLE D D,KAPLAN R A.In vitro stimulation of 25-hydroxycholecalciferol 1α-hydroxylation by parathyroid hormone in chick kidney slices:evidence for a role for adenosine 3′,5′-monophosphate[J].Endocrinology,1981,108(3):1002-1006.

[39]BIKLE D D,MURPHY E W,RASMUSSEN H.The ionic control of 1,25-dihydroxyvitamin D3synthesis in isolated chick renal mitochondria.The role of calcium as influenced by inorganic phosphate and hydrogen-ion[J].J Clin Invest,1975,55(2):299-304.

[40]BUSHINSKY D A,RIERA G S,FAVUS M J,et al.Evidence that blood ionized calcium can regulate serum 1,25(OH)2D3independently of parathyroid hormone and phosphorus in the rat[J].J Clin Invest,1985,76(4):1599-1604.

[41]HULTER H N,HALLORAN B P,TOTO R D,et al.Long-term control of plasma calcitriol concentration in dogs and humans.Dominant role of plasma calcium concentration in experimental hyperparathyroidism[J].J Clin Invest,1985,76(2):695-702.

[42]HUGHES M R,BRUMBAUGH P F,HUSSLER M R,et al.Regulation of serum 1α,25-dihydroxyvitamin D3by calcium and phosphate in the rat[J].Science,1975,190(4214):578-580.

[43]PORTALE A A,HALLORAN B P,MORRIS R C Jr.Dietary intake of phosphorus modulates the circadian rhythm in serum concentration of phosphorus.Implications for the renal production of 1,25-dihydroxyvitamin D[J].J Clin Invest,1987,80(4):1147-1154.

[44]CONDAMINE L,MENAA C,VRTOVSNIK F,et al.Local action of phosphate depletion and insulin-like growth factor 1 on in vitro production of 1,25-dihydroxyvitamin D by cultured mammalian kidney cells[J].J Clin Invest,1994,94(4):1673-1679.

[45]BIKLE D D,PILLAI S.Vitamin D,calcium,and epidermal differentiation[J].Endocr Rev,1993,14(1):3-19.

[46]XIE Z,MUNSON S J,HUANG N,et al.The mechanism of 1,25-dihydroxyvitamin D3autoregulation in keratinocytes[J].J Biol Chem,2002,277(40):36987-36990.

[47]SCHUSTER I,EGGER H,ASTECKER N,et al.Selective inhibitors of CYP24:mechanistic tools to explore vitamin D metabolism in human keratinocytes[J].Steroids,2001,66(3-5):451-462.

[48]BRENZA H L,KIMMEL-JEHAN C,JEHAN F,et al.Parathyroid hormone activation of the 25-hydroxy vitamin D3-1α-hydroxylase gene promoter[J].Proc Natl Acad Sci U S A,1998,95(4):1387-1391.

[49]SCHLINGMANN K P,KAUFMANN M,WEBER S,et al.Mutations in CYP24A1 and idiopathic infantile hypercalcemia[J].N Engl J Med,2011,365(5):410-421.

[50]ST-ARNAUD R,ARABIAN A,TRAVERS R,et al.Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D[J].Endocrinology,2000,141(7):2658-2666.

[51]HAHN C N,KERRY D M,OMDAHL J L,et al.Identification of a vitamin D responsive element in the promoter of the rat cytochrome P45024gene[J].Nucleic Acids Res,1994,22(12):2410-2416.

[52]CHEN K S,DELUCA H F.Cloning of the human 1α,25-dihydroxyvitamin D-3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements[J].Biochim Biophys Acta,1995,1263(1):1-9.

[53]OHYAMA Y,OZONO K,UCHIDA M,et al.Identification of a vitamin D-responsive element in the 5′-flanking region of the rat 25-hydroxy vitamin D324-hydroxylase gene[J].J Biol Chem,1994,269(14):10545-10550.

[54]GARABEDIAN M,HOLICK M F,DELUCA H F,et al.Control of 25-hydroxycholecalciferol metabolism by parathyroid glands[J].Proc Natl Acad Sci U S A,1972,69(7):1673-1676.

[55]ARMBRECHT H J,WONGSURAWAT V J,HODAM T L,et al.Insulin markedly potentiates the capacity of parathyroid hormone to increase expression of 25-hydroxy vitamin D3-24-hydroxylase in rat osteoblastic cells in the presence of 1,25-dihydroxyvitamin D3[J].FEBS Lett,1996,393(1):77-80.

[56]INOUE Y,SEGAWA H,KANEKO I,et al.Role of the vitamin D receptor in FGF23 action on phosphate metabolism[J].Biochem J,2005,390(Pt 1):325-331.

[57]WU S,GRIEFF M,BROWN A J.Regulation of renal vitamin D-24-hydroxylase by phosphate:effects of hypophysectomy,growth hormone and insulin-like growth factorⅠ[J].Biochem Biophys Res Commun,1997,233(3):813-817.

[58]BIKLE D D,GEE E,HALLORAN B,et al.Free 1,25-dihydroxyvitamin D levels in serum from normal subjects,pregnant subjects,and subjects with liver disease[J].J Clin Invest,1984,74(6):1966-1971.

[59]BIKLE D D,SIITERI P K,RYZEN E,et al.Serum protein binding of 1,25-dihydroxyvitamin D:a reevaluation by direct measurement of free metabolite levels[J].J Clin Endocrinol Metab,1985,61(5):969-975.

[60]BIKLE D D,GEE E,HALLORAN B,et al.Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein[J].J Clin Endocrinol Metab,1986,63(4):954-959.

[61]BIKLE D D,HALLORAN B P,GEE E,et al.Free 25-hydroxyvitamin D levels are normal in subjects with liver disease and reduced total 25-hydroxyvitamin D levels[J].J Clin Invest,1986,78(3):748-752.

[62]POWE C E,EVANS M K,WENGER J,et al.Vitamin D-binding protein and vitamin D status of black Americans and white Americans[J].N Engl J Med,2013,369(21):1991-2000.

[63]NIELSON C M,JONES K S,CHUN R F,et al.Free 25-Hydroxyvitamin D:Impact of Vitamin D Binding Protein Assays on Racial-Genotypic Associations[J].J Clin Endocrinol Metab,2016,101(5):2226-2234.

[64]BIKLE D,BOUILLON R,THADHANI R,et al.Vitamin D metabolites in captivity?Should we measure free or total 25(OH)D to assess vitamin D status?[J].J Steroid Biochem Mol Biol,2017,173:105-116.

[65] MALMSTROEM S,REJNMARK L,IMBODEN J B,et al.Current Assays to Determine Free 25-Hydroxyvitamin D in Serum[J].J AOAC Int,2017,100(5):1323-1327.

[66]NYKJAER A,DRAGUN D,WALTHER D,et al.An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH)vitamin D3[J].Cell,1999,96(4):507-515.

[67]GUHA C,OSAWA M,WERNER P A,et al.Regulation of human Gc(vitamin D—binding)protein levels:hormonal and cytokine control of gene expression in vitro[J].Hepatology,1995,21(6):1675-1681.