![水沙物理模型几何变态与时间变态研究](https://wfqqreader-1252317822.image.myqcloud.com/cover/47/40936047/b_40936047.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
2.1 潮流的相似条件
在以x、y、z表示的直角坐标系中,流体运动基本方程具有如下形式:
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_1.jpg?sign=1738977109-Uw6HuM02I1wjfrpG9QRcJ1myb3TRwv0s-0-d5de16ce876f9f8f5bb6ba465e7e823f)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_2.jpg?sign=1738977109-UEgvXhN5l1b1cxAwC3dXPVpQgL8PXVv9-0-cf47683840cc40ff5597ecf29ad830c6)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_3.jpg?sign=1738977109-fVPxLSiH1HjQN2VzVPp6AZ9XqZFhcbe3-0-bfcb9634768eb1572f0378850e612c32)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_4.jpg?sign=1738977109-gaJ0SU2IJnj4zisvQHFGGSYx9tAJcB9Q-0-a841d6af01b8e78f9f8973d2ebd7802a)
式中:u、v、w分别为x、y、z方向上的时均流速分量;t为时间;p为压力;ρ为水的密度;和
等为紊动应力。
当x轴取河道纵向方向、y轴取河道横向方向、z轴以河底为原点并垂直向上,则上述方程组可写为
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_7.jpg?sign=1738977109-d7YHHWtRjPbhbP0R97IHMfff0ndmEHdl-0-8b3a0e494d596de21305b59a25c2084f)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_8.jpg?sign=1738977109-TlhJHWdSCmRXHf7fOGRipY0bikZAlcGd-0-e30eeef5689a929a9373d39419f5674f)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_9.jpg?sign=1738977109-iX14cSvrv1xfqxlchKb8B64IBRkjmfcF-0-1305a12053f6e460ba61c8b2d0ec225d)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_10.jpg?sign=1738977109-IUnf3KkKwpntBSSseU0ks7Tk27gRvIBO-0-e27c8645cbcbdb8b44e0fe632498c08f)
式中:g为重力加速度;ix和iy分别为纵向和横向水面比降。
对于一般河流、河口和海岸区的水流,其水面上的压力就是大气压力,沿x和y方向的变化均很小,一般可忽略不计,因而有
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_11.jpg?sign=1738977109-5HcK9HxYMpXwpadFcbywAKheJ0rtJQ4l-0-67e084cc7e024443e2fedd29194ebf0d)
除了紧靠建筑物的局部区域,压力随水深的变化一般均接近静水压力分布,即p=ρg(h-z),因而有
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_12.jpg?sign=1738977109-q0oeQkGIQ8EkXf7QhIghpqXUxRWsQH1P-0-fade3a70d8d48be9ae7ae3cc9db9d870)
式(2.4a)中的基本上保持为常值[140],则有
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_14.jpg?sign=1738977109-8NHRoZQKQ0LOC4PKE7nyAHjQKWPPCYuz-0-289501272fd265f23bc617839d7333aa)
而水平方向紊动切应力和
均从水面向河底接近直线增大,因而可分别近似表示为
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_17.jpg?sign=1738977109-iWPUuyPwtR1m4phWdiiXnIuo4HyTum6J-0-bfcf9e700c1c2b36bed79c2084cf3b15)
式中:C0为无尺度谢才系数;C为谢才系数;U和V分别为垂线平均流速在x和y方向的分量;h为水深。
考虑到上述各简化计算式并忽略水的黏滞阻力,可以得到潮流运动方程:
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_18.jpg?sign=1738977109-6EdwMKuSwIIGrPzpIGJE4eDrF7DKIDyl-0-458e5567b6051b57d06db37f78558dad)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_19.jpg?sign=1738977109-l5zuwrernRrUmIZ3wtgn05uyRon76ui4-0-c5d52ba4516d94a487e53f84cb8ec71b)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_20.jpg?sign=1738977109-vJUdtZlk5XZ6dY6Tu19RR1nQ8Z9UzSL5-0-a6010cd699ab45a349f3bb42d3bd7a00)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_21.jpg?sign=1738977109-zRsn6MAOr9ca7h9uKLfD3qf275z0baGz-0-94c460ed8748c0a85c804b64dd914bb8)
如果上述方程组中的各项均能按相同的比例缩小,则模型中的水流就能与原型相似。将各模型量代入式(2.1b)~式(2.4b)中,得到下列方程,其中λ为比尺,表示原型量与模型量的比值,其下标m表示相应的模型量,下标p表示相应的原型量。
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_22.jpg?sign=1738977109-3QcyZycg37jp3Q6wTQdR9t5NuRySEfFi-0-01c44453c94b00b1072a3d219595e866)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_23.jpg?sign=1738977109-LuM0oFe5HSfPy4rrmWcokY5hWadpCDNp-0-b7fea3b3ae047de91bc0ec9168564b9e)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_24.jpg?sign=1738977109-PCW6771aObLcQOJQmDmxMAOyk1TZbroD-0-b44b1374e2210d307eef6f8188e76353)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_25.jpg?sign=1738977109-KTfEq77DO6cl3RhdOP94gsPpC5BWBS1j-0-0381df2f8958ccfeb0eca74d5241de41)
若式(2.5)两边同除以,可得到
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_27.jpg?sign=1738977109-Dq6uSrqAk8s8XZEdXsjStHw0QDAtf8o2-0-064c9ffa03c49c4aca68daff7d7c0a8e)
若式(2.6)两边同除以,可得到
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_29.jpg?sign=1738977109-ySUot7CNjuYyA4jVIIcRG42K86tOJXIz-0-b046f8eadd5703b5f008e92a3fca0c1f)
若式(2.7)两边同除以,可得到
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_31.jpg?sign=1738977109-Uer4k3PQE5jLUyB2PHzak5j9Gef7UHs1-0-39d52fb4efdd20ef8e86df9b1a38f55c)
若式(2.8)两边同除以,可得到
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_33.jpg?sign=1738977109-4v1g0rsay63AN3HqFXzfrRy0hbKSi176-0-09e9f2704e8deb903765f81f651b4fe1)
模型的水流运动满足连续方程和运动方程的条件是
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_34.jpg?sign=1738977109-FfKgYP6GlnjQP6jml7ecm6ya4aasui23-0-2615780c96d87ecbb3114f9f63059654)
当水平比尺相同时,即λx=λy=λl时,得到模型水流与原型水流的相似条件为
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_35.jpg?sign=1738977109-19RkGIpkXSan7F7JTRys6IrrmpCZZHJT-0-949e917ab042ff727bdde075b2db7c11)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_36.jpg?sign=1738977109-gcqONmPtUHkv7uCnLTUtA7nl4vGgUlg9-0-e814513f133b6aa3676d50bd7772f5e0)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_37.jpg?sign=1738977109-w8daSh5agcSa3OVso0Dp0dgMXgEop1vC-0-55448c358328cb3a1e83f54ff4265404)
![](https://epubservercos.yuewen.com/4C1F05/21277061008241106/epubprivate/OEBPS/Images/txt003_38.jpg?sign=1738977109-oiSFBtarGbLnsH5LbFeBVR7xUB37hY57-0-54ce6c4583e38f85e1bedd186f7cfcbb)
式(2.9)~式(2.11)由惯性力与重力比尺相同而得,称其为重力相似条件;式(2.12)由惯性力与阻力比尺相同而得,故称之为阻力相似条件。上述相似条件既适用于正态模型,也适用于变态模型。