![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.2 反函数的求导法则
已经解决了对数函数和三角函数的求导公式,下面需要解决它们的反函数指数函数和反三角函数的求导,为此给出如下定理.
定理2 如果函数x=φ(y)在区间I内单调、可导,且φ(y)'≠0,则其反函数y=f(x)在相应区间内也可导,且
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059008.jpg?sign=1739250399-X2PnwTo9dfrfacd2JmYJMrQE9ZsE7Ret-0-d06ed8b652ceeccceef8d329ed63fabd)
证明 由于互为反函数x=φ(y)与y=f(x)在各自相应的区间内单调性是一致的,所以,当Δx≠0时,Δy≠0,则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059009.jpg?sign=1739250399-3dNZ4MmzNjVWj8DWGsyFLlfPp2Zx09Dn-0-cdb24b3cad3ede673497e10f15308b94)
函数x=φ(y)在区间I内可导且φ(y)'≠0,则函数x=φ(y)在区间I内必连续,则其反函数y=f(x)在相应区间内也连续,即当Δx→0时,Δy→0,所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059010.jpg?sign=1739250399-TrrGNX4W1J52YK8hyWejQ5ujJamXx0Na-0-8945c616edf2f73404a5fab8c89d82ec)
即
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060001.jpg?sign=1739250399-0CIro8Qq7w9b6lLpEMYBKsFYrzDeqKDX-0-5aa1fb47b0188bb5036c04b26408d362)
简言之,某函数反函数的导数等于该函数导数的倒数.
例6 求函数y=arcsinx和y=arctanx的导数.
解 因为y=arcsinx(-1<x<1)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060004.jpg?sign=1739250399-3R13WY1GWDxFsjHeVPkU11YeTZlv1qWy-0-f6788c28056331fd5fa9d7bef9472c0e)
因为y=arctanx(-∞<x<+∞)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060006.jpg?sign=1739250399-omfL3DbkHaaU2at5lXSZ6clfl1mt3ECp-0-0b4f3776f23c8421222a57ae18726330)
所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060007.jpg?sign=1739250399-Lvuy3t5N9DV29dZKyapgV59zZKF9wyau-0-48d016b6823c52de3a49f38d0355ced5)
同理可推得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060008.jpg?sign=1739250399-N03TLb5FiY7J6VDSVEdnB6BITbZXYOBl-0-34f2cc0dae061a93ea91bc1ba68f57e6)
(ax)'=axlna,(ex)'=ex.
例7 求函数的导数.
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060010.jpg?sign=1739250399-h4Rm73ZFs5IODNV3AzTaaD82SFxp0Fde-0-0e2bc851fa5c6cc58370bcc80cdb27a1)