![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
1.4.1 第一重要极限
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034001.jpg?sign=1739249671-SDlQGCDdfh5X7hd6fDGpgM2vMTHyQmgm-0-87522dd192042303657aa03ec945b1a4)
为了更好地理解第一重要极限,先给出如下夹逼定理.
定理(夹逼定理) 如果,
,且
G(x)≤f(x)≤F(x),
则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034004.jpg?sign=1739249671-uu53LBY9PCGt8I5i98Y4KHYFXY4lHcqx-0-e3045f8592a7f2e5d884504c8fb79eb9)
从直观上可以看出,该定理是很明显的.当x→x0时,f(x)的左、右函数G(x)和F(x)的极限都同时无限趋近于常数A,则会“逼迫”中间函数f(x)也无限趋近于常数A.
下面根据该定理证明第一重要极限.
作单位圆,如图1-22所示,取圆心角∠AOB=x,令x→0+,不妨假设2.由图可看出,S△AOB<S扇AOB<S△AOD,即
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034006.jpg?sign=1739249671-zfozkzPxaeGc41XdfE7FynZ2LeBnnhvr-0-0daebe38ec6a4aee3c053d2f0c6880c9)
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034007.jpg?sign=1739249671-n5QiwVnr5Vc9r9s9ysIaEAucEzmXF1s9-0-e0817a647354fa9d476bb4a02b57d965)
图 1-22
从而有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034008.jpg?sign=1739249671-4ehm5Psya7fv2hLGkrRo6cu4chXpBPgR-0-b9bac85eea4568f940b44870b0a911cf)
取倒数
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034009.jpg?sign=1739249671-VCehMuUwFS5tmFvk2KhA1o3KXPRPBfmN-0-d0ecd8fe110d7b271621fbf71b2746f9)
因为,根据本节定理,证得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034011.jpg?sign=1739249671-ResQEACtz7RxsDKGVwS5lp2sM6xcL2Wy-0-1d6aaffe67d86d527490eb1276528515)
又因为cosx和x均是偶函数,所以当x→0-,即对于
,结论仍成立,
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034014.jpg?sign=1739249671-os1IQ47sHmJWb1zxO4ThrNqujea9axKg-0-87954fbbfd918bb068126bf878d308be)
由§1.2节定理2,有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034015.jpg?sign=1739249671-Z41DTC5DOex2FpTdUACtrIAjEqwXRrv4-0-ef372a5b8ae6b196c6c96a6e73a8ed34)
第一重要极限公式(1-1)在极限运算中有重要的作用,要较好地掌握它,必须认清它的特点.
发现:(1)极限是 型,且含有正弦函数;
(2)极限为类型 或x→∞时,□→0,其本质为:
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035003.jpg?sign=1739249671-KVWC2wxGaedjdA5RvKD9TS1FkiDOw45k-0-d04402d0127d86cc422a5a22a5427292)
例1 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035005.jpg?sign=1739249671-TKxYjVTYpiFmGXqqqAtEgUI6u9UklFSE-0-f78d9ee1e72dd2d2496659c1d6ea8646)
例2 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035007.jpg?sign=1739249671-hloaP1fJPkGVGCYNCn50DViJFf2TmwuP-0-46f834a206fb020f179f9c8a66e54ad2)
例3 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035009.jpg?sign=1739249671-8PEPMe40VcxGxLzkmyptAJjtbt8yyyaP-0-ad0556f1d09e229c1875212c89c405d3)
例4 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035011.jpg?sign=1739249671-Axz7GUIJDph0CN5VA40TfcxlMsaewyh4-0-d18324c1816ccb4d963cc2ca0d3ee7b9)
例5 证明
证明 令arcsinx=t,则x=sint,当x→0时,t→0,则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035013.jpg?sign=1739249671-IhSUDdB12JJmKFdbhfucubrz7rRHNlq3-0-dc7fcea932aa9659cb28d6b95d68aa72)
发现:(1) ;(2)
;(3)
;(4)sinkx≠ksinx.