
会员
新智元:机器+人类=超智能时代
杨静更新时间:2019-01-04 14:21:50
最新章节:新智元人工智能智库名单及部分专家简介开会员,本书免费读 >
谷歌AlphaGO战胜李世石,标志着机器智能向人类智能的领地又迈进了伟大的一步。而“互联网”向“智能”时代的跃迁,也昭示新智能时代即将到来。2016年,恰逢人工智能诞生60周年,本书是人工智能技术和产业狂飙突进的见证,为读者打开人工智能世界的一扇大门,不仅可以一窥百度大脑、讯飞超脑、中国大脑计划究竟,更可以著名人工智能研究院院长等顶级专家大咖的技术解密作为对智能产业未来趋势的参照。近百位学界、商界、技术界、产业界的专家,从机器人、机器人学习、智能汽车、智能医疗、认知科学、高性能计算和“AI”投资等不同视角,对人工智能和机器人产业进行评析。人类未来在AI时代将何去何从,超智能时代将引发社会更多思考。
上架时间:2016-03-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
杨静
主页
同类热门书
最新上架
- 会员
巧用ChatGPT快速提高职场晋升力
本书共分为10章,从ChatGPT的基本知识、技术原理和应用场景出发,探讨了如何运用ChatGPT提升职场竞争力。计算机11.4万字 - 会员
Sora AI视频生成、案例解析与场景应用
本书通过81个官方案例解析、120个知识点梳理,深入浅出介绍了Sora的技术原理、特色功能、创新之处、优势特点、文案工具、脚本创作、提示词技巧、绘画工具、创意应用、变现方式等,帮助读者一本书全面精通Sora的AI视频生成技术。10大专题内容、108分钟视频,手机扫码可看精华内容,同时赠送了9大超值资源:74组AI绘画提示词、104个效果文件、165页PPT课件、31集《AI摄影》教学视频、40集《计算机6.8万字 制造业大模型的构建与实践
本书分两篇,为读者提供基于制造业视角的大模型理论与应用指南。基础篇深入大模型理论层面,主要介绍大模型的基础知识、构建路径、价值对齐策略,同时涉及多模态与AIGC技术、提示词工程的相关知识。应用篇则聚焦于大模型的实践应用层面,主要讲解垂直制造领域微调、RAG等构建技术,AIAgent的原理与应用,以及大模型压缩与部署策略,并且通过具体案例来展示大模型在工业制造及设备运维等方面的应用,最后对大模型进行计算机18.3万字- 会员
ChatGPT时代:ChatGPT全能应用一本通
本书共16章,内容包括人工智能、OpenAI、ChatGPT的概述及其操作技巧。生动展示了ChatGPT在教育与学术、商业管理、新媒体、办公、求职等12个领域的实际运用,同时探讨了ChatGPT当前面临的挑战以及大模型的未来发展方向。计算机12万字 - 会员
人工智能算法基础
本书分为4章,共20章。其中第1篇为基础算法篇,从第1章到第9章,讲述排序、查找、线性结构、树、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,从第10章到第14章,讲述分类算法、回归算法、聚类算法、降维算法和集成学习算法;第3篇为强化学习算法篇,从第15章到第16章,讲述基于价值的强化学习算法和基于策略的强化学习算法;第4篇为深度学习算法篇,从第17章到第19章,讲述神经网络模型算法、计算机0字 - 会员
AI律师助手:律师实务ChatGPT实战指南
本书具体包含以下内容:首先,探讨ChatGPT对法律界的冲击,以及律师等从业者的不同反应,进一步分析AI技术对行业的影响和发展趋势。接着,简要介绍ChatGPT的技术原理及应用场景。随后,详细讨论如何将AI力量融入律师职业路径,构建专业律师成长的新飞轮。接下来,分别讨论如何将ChatGPT(GPTs)应用于渠道与案源、检索与研究、案件分析,以及法律文书撰写与合同审核,实现部分日常事务自动化执行。之计算机10.6万字 - 会员
ChatGPT手册:初学者指南与应用实战
本书理论联系实际,全面地介绍ChatGPT的主要应用场景,帮助读者掌握ChatGPT的使用方法和技巧。本书不仅讲述了ChatGPT在学习、写作、工作、生活方面的应用案例,还介绍了一个打造个人品牌的综合应用,内容实用,可操作性强。本书适合希望了解ChatGPT的初学者阅读。计算机9.6万字 - 会员
人工智能治理研究
本书从技术和规制两个角度入手,以人工智能治理的法律、公共政策以及伦理规范等相关社会行为和社会关系的规则建立和运行为主要思考方向和研究进路,在梳理人工智能发展情况、欧盟及其他国家人工智能立法与政策发布现状的基础上,对人工智能治理的基础、基本路径及我国人工智能产业、政策与规制思路进行了全面和有益的探索。计算机23.9万字 - 会员
人工智能数学基础与Python机器学习实战
本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle计算机0字